問題
n∑k=1k−1k!
の値を求めよ。

分母がk!階乗になってる

どうやって解いたらいい?
とりあえず、k=1からひたすら代入して何かわからないか考える。
…でも上手くいかない。

通分するとか…

!! できない!!!

分母をそろえるのは難しいですね
ちょっと工夫してみたらどうでしょう
そうか!これは部分分数分解か!
そう思ってトライしても…分母が階乗じゃどうしようもない!
「先生~、これどうやったら解けるんですかあ?」
質問が多い問題の一つです。できればすぐに説明を聞かずに、一晩じっくり向き合って頭をフル回転で考えて欲しい良問。

部分分数分解を疑うのはとてもセンスがいいです。
でも確かに普通に考えても分母はどんどん因数が増えてしまうわけなので
難しそうですね。
ちょっとこういう変形をしたらどうでしょう?

あ、なんだかスッキリした
ここでk=1のときが0なので、除外してスタートをk=2にするのがポイント。記述でうっかりk=1のままにすると、分母が0!になってしまうので気を付けてください。
ここまで来ると、部分分数分解のときのように綺麗に中が消えていって気持ちがいい!ですね。
というわけで、計算すると
=11−12!+12!−13!+13!−14!...1(n−1)!−1n!=1−1n!
いかがでしょうか?
難しそうに見えますが、でもちょっとした工夫であっという間に解けてしまう問題でした。
余談ですが、「部分分数分解」って、早口言葉みたいで言いにくいですよね。
(私はいつも「ぶぶんぶんぶん…」と、バイク音のようになってしまいます)

プリクマ先生、本当にバイク好きなんだね